Forecasting about EURJPY exchange rate using hidden Markova model and CART classification algorithm
نویسندگان
چکیده
The goal of this paper is forecasting direction (increase or decrease) of EURJPY exchange rate in a day. For this purpose five major indicators are used. The indicators are exponential moving average (EMA), stochastic oscillator (KD), moving average convergence divergence (MACD), relative strength index (RSI) and Williams %R (WMS %R). Then a hybrid approach using hidden Markov models and CART classification algorithms is developed. Proposed approach is used for forecasting direcation (increase or decrease) of Euro-Yen exchange rates in a day. Also the approach is used for forecasting differnece between intial and maximum exchange rates in a day. As well as it is used for forecasting differnece between intial and minimum exchange rates in a day. Reslut of proposed method is compared with CART and neural network. Comparison shows that the forecasting with proposed method has higher accuracy.
منابع مشابه
The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملUsing a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting
Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...
متن کاملThe Contribution of Observed and Unobserved Fundamentals to Exchange Rate Movements in Iran
Using a State-space model, this paper investigates the contribution of both observed and unobserved fundamentals to nominal exchange rate movement in Iran for the period 1991:2-2011:4. To this end, we follow Engel and West (2005) and Balke et al. (2013) and use an asset-pricing approach to develop a rational expectations present value exchange rate model. In order to examine the role of fun...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کامل